diff --git a/README.Rmd b/README.Rmd
index b5f48da..061ad35 100644
--- a/README.Rmd
+++ b/README.Rmd
@@ -38,7 +38,14 @@ min.r <- substr(description[, "Depends"], 7, 11)
-The InPlotSampling package provides a way for researchers to easily implement Ranked Set Sampling in practice.
+The InPlotSampling package provides a way for researchers to easily implement these sampling methods in
+practice.
+
+- Judgment post-stratified (JPS) sampling
+- Ranked set sampling (RSS)
+- Porbability-proportional to size (PPS) sampling
+- Spatially balanced sampling (SBS)
+- Two-stage cluster sampling
## Table of Contents
@@ -46,7 +53,7 @@ The InPlotSampling package provides a way for researchers to easily implement Ra
* [Sampling Methods](#sampling-methods)
* [JPS Sampling](#jps-sampling)
- * [RSS Sampling](#rss-sampling)
+ * [RSS](#rss-sampling)
* [Installation](#installation)
* [Examples](#examples)
* [JPS Sample and Estimator](#jps-sample-and-estimator)
@@ -64,17 +71,17 @@ Sampling is made following the diagram below.

-### RSS Sampling
+### RSS
Sampling is made following the diagram below.
-
+
## Installation
Use the following code to install this package:
-```{r eval=F}
+```{r, eval=F}
if (!require("remotes")) install.packages("remotes")
remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)
```
@@ -84,81 +91,81 @@ remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)
### JPS Sample and Estimator
- JPS sample and estimator
-
- ``` r
- set.seed(112)
- population_size <- 600
- # the number of samples to be ranked in each set
- H <- 3
-
- with_replacement <- FALSE
- sigma <- 4
- mu <- 10
- n_rankers <- 3
- # sample size
- n <- 30
-
- rhos <- rep(0.75, n_rankers)
- taus <- sigma * sqrt(1 / rhos^2 - 1)
- population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
-
- data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
- data <- data[order(data[, 2]), ]
-
- InPlotSampling::rss_jps_estimate(
- data,
- set_size = H,
- method = "JPS",
- confidence = 0.80,
- replace = with_replacement,
- model_based = FALSE,
- pop_size = population_size
- )
- #> Estimator Estimate Standard Error 80% Confidence intervals
- #> 1 UnWeighted 9.570 0.526 8.88,10.26
- #> 2 Sd.Weighted 9.595 0.569 8.849,10.341
- #> 3 Aggregate Weight 9.542 0.500 8.887,10.198
- #> 4 JPS Estimate 9.502 0.650 8.651,10.354
- #> 5 SRS estimate 9.793 0.783 8.766,10.821
- #> 6 Minimum 9.542 0.500 8.887,10.198
- ```
+JPS sample and estimator
+
+``` r
+set.seed(112)
+population_size <- 600
+# the number of samples to be ranked in each set
+H <- 3
+
+with_replacement <- FALSE
+sigma <- 4
+mu <- 10
+n_rankers <- 3
+# sample size
+n <- 30
+
+rhos <- rep(0.75, n_rankers)
+taus <- sigma * sqrt(1 / rhos^2 - 1)
+population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
+
+data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
+data <- data[order(data[, 2]), ]
+
+InPlotSampling::rss_jps_estimate(
+ data,
+ set_size = H,
+ method = "JPS",
+ confidence = 0.80,
+ replace = with_replacement,
+ model_based = FALSE,
+ pop_size = population_size
+)
+#> Estimator Estimate Standard Error 80% Confidence intervals
+#> 1 UnWeighted 9.570 0.526 8.88,10.26
+#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
+#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
+#> 4 JPS Estimate 9.502 0.650 8.651,10.354
+#> 5 SRS estimate 9.793 0.783 8.766,10.821
+#> 6 Minimum 9.542 0.500 8.887,10.198
+```
### SBS PPS Sample and Estimator
- SBS PPS sample and estimator
-
- ``` r
- set.seed(112)
-
- # SBS sample size, PPS sample size
- sample_sizes <- c(5, 5)
-
- n_population <- 233
- k <- 0:(n_population - 1)
- x1 <- sample(1:13, n_population, replace = TRUE) / 13
- x2 <- sample(1:8, n_population, replace = TRUE) / 8
- y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
- measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
-
- population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
- sample_result <- sbs_pps_sample(population, sample_sizes)
-
- # estimate the population mean and construct a confidence interval
- df_sample <- sample_result$sample
- sample_id <- df_sample[, 1]
- y_sample <- y[sample_id]
-
- sbs_pps_estimates <- sbs_pps_estimate(
- population, sample_sizes, y_sample, df_sample,
- n_bootstrap = 100, alpha = 0.05
- )
- print(sbs_pps_estimates)
- #> n1 n2 Estimate St.error 95% Confidence intervals
- #> 1 5 5 2.849 0.1760682 2.451,3.247
- ```
+SBS PPS sample and estimator
+
+``` r
+set.seed(112)
+
+# SBS sample size, PPS sample size
+sample_sizes <- c(5, 5)
+
+n_population <- 233
+k <- 0:(n_population - 1)
+x1 <- sample(1:13, n_population, replace = TRUE) / 13
+x2 <- sample(1:8, n_population, replace = TRUE) / 8
+y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
+measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
+
+population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
+sample_result <- sbs_pps_sample(population, sample_sizes)
+
+# estimate the population mean and construct a confidence interval
+df_sample <- sample_result$sample
+sample_id <- df_sample[, 1]
+y_sample <- y[sample_id]
+
+sbs_pps_estimates <- sbs_pps_estimate(
+ population, sample_sizes, y_sample, df_sample,
+ n_bootstrap = 100, alpha = 0.05
+)
+print(sbs_pps_estimates)
+#> n1 n2 Estimate St.error 95% Confidence intervals
+#> 1 5 5 2.849 0.1760682 2.451,3.247
+```
# Citing this package
diff --git a/README.md b/README.md
index b82dc9b..c6f7780 100644
--- a/README.md
+++ b/README.md
@@ -11,18 +11,24 @@ public.](http://www.repostatus.org/badges/latest/wip.svg)](http://www.repostatus
[](https://codecov.io/gh/biometryhub/RankedSetSampling?branch=main)
[](https://github.com/biometryhub/InPlotSampling/actions)
-
+status](https://github.com/AAGI-AUS/InPlotSampling/workflows/R-CMD-check/badge.svg)](https://github.com/AAGI-AUS/InPlotSampling/actions)
+
[](https://cran.r-project.org/)
[](/commits/main)
-[](/commits/main)
+[](/commits/main)
[](http://choosealicense.com/licenses/mit/)
The InPlotSampling package provides a way for researchers to easily
-implement Ranked Set Sampling in practice.
+implement these sampling methods in practice.
+
+- Judgment post-stratified (JPS) sampling
+- Ranked set sampling (RSS)
+- Porbability-proportional to size (PPS) sampling
+- Spatially balanced sampling (SBS)
+- Two-stage cluster sampling
## Table of Contents
@@ -30,7 +36,7 @@ implement Ranked Set Sampling in practice.
- [Sampling Methods](#sampling-methods)
- [JPS Sampling](#jps-sampling)
- - [RSS Sampling](#rss-sampling)
+ - [RSS](#rss-sampling)
- [Installation](#installation)
- [Examples](#examples)
- [JPS Sample and Estimator](#jps-sample-and-estimator)
@@ -52,14 +58,13 @@ alt="JPS sampling diagram" />
JPS sampling diagram
-### RSS Sampling
+### RSS
Sampling is made following the diagram below.
-
-RSS sampling diagram
+
+RSS diagram
## Installation
@@ -68,7 +73,7 @@ Use the following code to install this package:
``` r
if (!require("remotes")) install.packages("remotes")
-remotes::install_github("biometryhub/InPlotSampling", upgrade = FALSE)
+remotes::install_github("AAGI-AUS/InPlotSampling", upgrade = FALSE)
```
## Examples
@@ -76,48 +81,46 @@ remotes::install_github("biometryhub/InPlotSampling", upgrade = FALSE)
### JPS Sample and Estimator
-
-
JPS sample and estimator
``` r
- set.seed(112)
- population_size <- 600
- # the number of samples to be ranked in each set
- H <- 3
-
- with_replacement <- FALSE
- sigma <- 4
- mu <- 10
- n_rankers <- 3
- # sample size
- n <- 30
-
- rhos <- rep(0.75, n_rankers)
- taus <- sigma * sqrt(1 / rhos^2 - 1)
- population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
-
- data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
- data <- data[order(data[, 2]), ]
-
- InPlotSampling::rss_jps_estimate(
- data,
- set_size = H,
- method = "JPS",
- confidence = 0.80,
- replace = with_replacement,
- model_based = FALSE,
- pop_size = population_size
- )
- #> Estimator Estimate Standard Error 80% Confidence intervals
- #> 1 UnWeighted 9.570 0.526 8.88,10.26
- #> 2 Sd.Weighted 9.595 0.569 8.849,10.341
- #> 3 Aggregate Weight 9.542 0.500 8.887,10.198
- #> 4 JPS Estimate 9.502 0.650 8.651,10.354
- #> 5 SRS estimate 9.793 0.783 8.766,10.821
- #> 6 Minimum 9.542 0.500 8.887,10.198
+set.seed(112)
+population_size <- 600
+# the number of samples to be ranked in each set
+H <- 3
+
+with_replacement <- FALSE
+sigma <- 4
+mu <- 10
+n_rankers <- 3
+# sample size
+n <- 30
+
+rhos <- rep(0.75, n_rankers)
+taus <- sigma * sqrt(1 / rhos^2 - 1)
+population <- qnorm((1:population_size) / (population_size + 1), mu, sigma)
+
+data <- InPlotSampling::jps_sample(population, n, H, taus, n_rankers, with_replacement)
+data <- data[order(data[, 2]), ]
+
+InPlotSampling::rss_jps_estimate(
+ data,
+ set_size = H,
+ method = "JPS",
+ confidence = 0.80,
+ replace = with_replacement,
+ model_based = FALSE,
+ pop_size = population_size
+)
+#> Estimator Estimate Standard Error 80% Confidence intervals
+#> 1 UnWeighted 9.570 0.526 8.88,10.26
+#> 2 Sd.Weighted 9.595 0.569 8.849,10.341
+#> 3 Aggregate Weight 9.542 0.500 8.887,10.198
+#> 4 JPS Estimate 9.502 0.650 8.651,10.354
+#> 5 SRS estimate 9.793 0.783 8.766,10.821
+#> 6 Minimum 9.542 0.500 8.887,10.198
```
@@ -125,40 +128,38 @@ JPS sample and estimator
### SBS PPS Sample and Estimator
-
-
SBS PPS sample and estimator
``` r
- set.seed(112)
-
- # SBS sample size, PPS sample size
- sample_sizes <- c(5, 5)
-
- n_population <- 233
- k <- 0:(n_population - 1)
- x1 <- sample(1:13, n_population, replace = TRUE) / 13
- x2 <- sample(1:8, n_population, replace = TRUE) / 8
- y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
- measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
-
- population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
- sample_result <- sbs_pps_sample(population, sample_sizes)
-
- # estimate the population mean and construct a confidence interval
- df_sample <- sample_result$sample
- sample_id <- df_sample[, 1]
- y_sample <- y[sample_id]
-
- sbs_pps_estimates <- sbs_pps_estimate(
- population, sample_sizes, y_sample, df_sample,
- n_bootstrap = 100, alpha = 0.05
- )
- print(sbs_pps_estimates)
- #> n1 n2 Estimate St.error 95% Confidence intervals
- #> 1 5 5 2.849 0.1760682 2.451,3.247
+set.seed(112)
+
+# SBS sample size, PPS sample size
+sample_sizes <- c(5, 5)
+
+n_population <- 233
+k <- 0:(n_population - 1)
+x1 <- sample(1:13, n_population, replace = TRUE) / 13
+x2 <- sample(1:8, n_population, replace = TRUE) / 8
+y <- (x1 + x2) * runif(n = n_population, min = 1, max = 2) + 1
+measured_sizes <- y * runif(n = n_population, min = 0, max = 4)
+
+population <- matrix(cbind(k, x1, x2, measured_sizes), ncol = 4)
+sample_result <- sbs_pps_sample(population, sample_sizes)
+
+# estimate the population mean and construct a confidence interval
+df_sample <- sample_result$sample
+sample_id <- df_sample[, 1]
+y_sample <- y[sample_id]
+
+sbs_pps_estimates <- sbs_pps_estimate(
+ population, sample_sizes, y_sample, df_sample,
+ n_bootstrap = 100, alpha = 0.05
+)
+print(sbs_pps_estimates)
+#> n1 n2 Estimate St.error 95% Confidence intervals
+#> 1 5 5 2.849 0.1760682 2.451,3.247
```
@@ -172,7 +173,7 @@ generates
Ozturk O, Rogers S, Kravchuk O, Kasprzak P (2021). _InPlotSampling:
Easing the Application of Ranked Set Sampling in Practice_. R package
- version 0.1.0, .
+ version 0.1.0, .
A BibTeX entry for LaTeX users is
@@ -181,7 +182,7 @@ generates
author = {Omer Ozturk and Sam Rogers and Olena Kravchuk and Peter Kasprzak},
year = {2021},
note = {R package version 0.1.0},
- url = {https://biometryhub.github.io/InPlotSampling/},
+ url = {https://aagi-aus.github.io/InPlotSampling/},
}
# Related Reference