These examples are inspired by the Center for High Throughput Computing examples, the pixi-docker project, and Pavel Zwerschke's pixi-docker-examples.
These examples assume that you want to use GPU resources to take advantage of hardware acceleration and so focus on using the Pixi Docker base images built on the NVIDIA CUDA enabled images for runtime use with the the NVIDIA Container Toolkit.
- Make sure that you have the
nvidia-container-toolkitinstalled on the host machine - Check the list of available tags on Github Container Registry to find the tag you want
Tip
You can use crane to do this from the command line as well
$ pixi global install crane
$ crane ls ghcr.io/prefix-dev/pixi- Use
docker pullto pull down the image corresponding to the tag
Example:
docker pull ghcr.io/prefix-dev/pixi:0.45.0-jammy-cuda-12.6.3
To check that NVIDIA GPUS are being properly detected run
docker run --rm --gpus all ghcr.io/prefix-dev/pixi:0.45.0-jammy-cuda-12.6.3 'nvidia-smi'
and check if the nvidia-smi output appears correctly.
To run (interactively) using GPUs on the host machine:
docker run --rm -ti --gpus all ghcr.io/prefix-dev/pixi:0.45.0-jammy-cuda-12.6.3