This repository provides the source code necessary to conduct numerical experiments described in the paper.
We recommend using a virtual environment to ensure reproducibility. You can create and activate one as follows:
# Create a virtual environment named .venv
python3 -m venv .venv
# Activate the environment
# Linux / macOS
source .venv/bin/activate
# Windows (PowerShell)
.\.venv\Scripts\Activate.ps1For the evaluation experiments, we provide two examples: Markovian reward process and Boyan chain. Each can be run with different step-size schedules:
python different_TD_fixed_points_im2.py --env MRP --step_size_schedule constant
python different_TD_fixed_points_im2.py --env Boyan --step_size_schedule s_decayFor the control experiments, we provide two examples: Access-control queuing and Pendulum. For example:
python control_experiment.py --env pendulum --num_experiments 30 --num_episodes 25000
python control_experiment.py --env access_control --num_experiments 30 --num_episodes 25000