Skip to content

Conversation

@SnO2WMaN
Copy link
Member

@SnO2WMaN SnO2WMaN commented Jan 12, 2026

close #698

lemma Refutable.quote_iff {σ : Sentence L} : T.Refutable (V := V) ⌜σ⌝ ↔ T.Provable (V := V) ⌜∼σ⌝ := by
simp [Refutable, Sentence.quote_def, Semiformula.quote_def]

noncomputable def refutable (T : Theory L) [T.Δ₁] : 𝚷-[2].Semisentence 1 := .mkPi
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

neg は $\Delta_1$-関数なので 正しくは $\Sigma_1$-文だと思う。

@SnO2WMaN SnO2WMaN changed the title add(Incompleteness): Add Jeroslow's Sentence add(Incompleteness): Add Jeroslow's Sentence and Formalized Law of Noncontradiction Jan 13, 2026
dsimp [flon] at consis;
have : T ⊢ (safe 𝔅 ℜ)/[⌜𝐉⌝] := by
sorry;
have h₃ : T ⊢ ∼(𝔅 𝐉 ⋏ ℜ 𝐉) := by simpa [safe] using this;
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

とても初歩的な質問なのだが,T ⊢ ∀' (safe 𝔅 ℜ)/[#0] から T ⊢ (safe 𝔅 ℜ)/[⌜𝐉⌝] を出したい.つまり specialize がどこかにあると思うのだが,探してもどこにあるのかよくわからなかった.どうすればいいのだろうか?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

実質的に LO.FirstOrder.Derivation.specialize がそれだが,普通の証明可能性については示していないと思う.


variable [L.ReferenceableBy L₀] {T₀ : Theory L₀} {T : Theory L}

@[coe] def rf (ℜ : Refutability T₀ T) (σ : Sentence L) : Sentence L₀ := ℜ.refu/[⌜σ⌝]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

どうでもいいことだが,証明可能性を bewisbar の 𝔅 で書くなら,反証可能性は widerlegbar の 𝔚 で書くべきでは.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

これは思ったが,𝔅 をそもそも 𝔓 にしたほうが良いような気もする.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

抽象的な可証性述語を B で書くのは Eine Interpretation des intuitionistischen Aussagenkalküls からの慣例なのでそんなに悪くないと思う.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

それはそう.

Comment on lines +5 to +29
namespace Derivation

variable {𝓢 : SyntacticFormulas L} {φ : SyntacticSemiformula L 1}

def specialize'! (t : SyntacticTerm L) (b : 𝓢 ⊢! ∀' φ) : 𝓢 ⊢! φ/[t] := by simpa using specialize (Γ := []) t b;

def specialize' (t : SyntacticTerm L) (b : 𝓢 ⊢ ∀' φ) : 𝓢 ⊢ φ/[t] := ⟨specialize'! t b.get⟩

end Derivation


namespace Theory

variable {T : Theory L} {φ : Semisentence L 1}

def specialize! (t) (b : T ⊢! ∀' φ) : T ⊢! (φ/[t]) := by
apply ofSyntacticProof;
sorry;

def specialize (t) (b : T ⊢ ∀' φ) : T ⊢ (φ/[t]) := by
have := Derivation.specialize' t $ provable_def.mp b;
apply provable_def.mpr;
sorry;

end Theory
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

あっては欲しいのだが.Termの扱いがよくわからず頓挫している.

Copy link
Member

@iehality iehality Jan 15, 2026

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Formalized Law of Noncontradiction and Jeroslow's Sentence

3 participants