Skip to content

A lightweight Retrieval-Augmented Generation (RAG) chatbot that embeds local documents, stores them in ChromaDB, and generates context-aware answers using LLaMA-3 (Groq).

Notifications You must be signed in to change notification settings

KruthikaTS/RAG_Chat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

6 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ“š RAG Pipeline (ChromaDB + SentenceTransformer + Groq)

A simple Retrieval-Augmented Generation (RAG) system that loads local text files, embeds them using SentenceTransformer, stores them in ChromaDB, and generates answers using Groq’s LLaMA 3 model.


πŸš€ Features

  • Local embeddings (no OpenAI required)
  • Persistent vector DB via ChromaDB
  • Query documents with semantic search
  • LLaMA 3 (Groq) for answers
  • Minimal, single-file implementation (main.py)

πŸ“ Project Structure

main.py
news_articles/              # .txt documents
chroma_persistent_storage/  # auto-generated (ignored)
.env                        # contains GROQ_API_KEY
requirements.txt
.gitignore
venv/

πŸ” Setup

Create a .env file:

GROQ_API_KEY=your_groq_api_key_here

Install dependencies:

pip install -r requirements.txt

▢️ Run

python main.py

Edit the question in main.py:

question = "tell me about databricks"

🧠 How it Works

  1. Load .txt files
  2. Chunk them
  3. Generate embeddings with all-MiniLM-L6-v2
  4. Store in ChromaDB
  5. Retrieve relevant chunks
  6. Send context β†’ Groq LLaMA 3 β†’ get answer

About

A lightweight Retrieval-Augmented Generation (RAG) chatbot that embeds local documents, stores them in ChromaDB, and generates context-aware answers using LLaMA-3 (Groq).

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages