An end-to-end platform for creating and shipping machine learning models to production.
Run the following command to setup the environment:
cd deploy
docker-compose up -d --buildNotes:
- You can change the environment variables in the
deploy/.envfile. - You can comment unwanted services in the
deploy/docker-compose.ymlfile.
TODOInstall the required dependencies:
cd server
pip install -r requirements.txtAdd the .env file in the server directory.
Run the server:
start.sh # or start.bat for windows├── .github <- GitHub templates and CI files.
│
├── client <- Client code.
│
├── datasets <- Datasets used for testing.
│
├── deploy
│ ├── k8s <- k8s manifests for deployment.
│ └── docker-compose.yml <- Docker compose file for development.
│
├── docs <- Documentation and examples.
│
├── infrastructure <- Infrastructure code.
│
├── network_generator <- Network generator module.
│
├── notebooks <- Development code.
│
├── server <- Server code.
│ │
│ └── lighthouse
│ │
│ ├── automl
│ │
│ ├── ml_projects
│ │ ├── api <- ML projects API.
│ │ ├── db <- ML projects database and migration scripts.
│ │ └── services <- Contains the logic for orchestrating ML projects.
│ │
│ ├── mlops
│ │ ├── monitoring <- Models monitoring service.
│ │ └── serving <- Models deployment service.
│ │
│ ├── __main__.py <- The entrypoint for the server.
│ ├── config.py <- Contains the configuration for the server.
│ └── logger.py <- Logging utility.
│
└── wrapper <- ML model wrapper code.
