Skip to content

RSandAI/Land2Sent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

# Land2Sent

A benchmark for Landsat to Sentinel imageries via deep learning based super-resolution methods.

Dataset Details

Image pairs of this dataset queried inside Google Earth Engine using the following criteria's: Cloudless images, the year 2023 images, acquisition time less than 1 hour between image pairs, and common area of pairs must be at least 100 km x 100 km. 30 pairs manually selected from these pairs using Land2Sent GEE application. Sentinel images are tiled 480 x 480 pixels and Landsat images are tiled 160 x 160 pixels for super resolution model training. Total of 15066 tiles produced. The dataset splitted %70 training, %20 validation, and %10 testing.

platform

tile_examples

Benchmark Results

Metrics

Metric values on normalized 4-band images:

Method PSNR↑ SSIM↑ AG↑ NIQE↓ PI↓
CAFRN 35.212 0.964 0.00545 20.327 13.764
DCM 35.468 0.967 0.00533 20.283 13.882
FENet 35.061 0.963 0.00531 20.214 13.829
HAUNet 35.932 0.965 0.00567 20.317 13.736
HSENet 35.588 0.963 0.00571 20.338 13.670
MHAN 35.801 0.970 0.00582 20.295 13.627
Omnisr 35.530 0.965 0.00559 20.366 13.696
RCAN 36.171 0.965 0.00614 20.305 13.487
SAN 35.653 0.966 0.00558 20.260 13.655
RDN 36.636 0.972 0.00594 20.364 13.555

Metric values on original 16-bit images

Method PSNR↑ SSIM↑ AG↑ NIQE↓ PI↓
CAFRN 50.262 0.986 0.00082 20.605 14.155
DCM 50.388 0.987 0.00086 20.615 14.221
FENet 49.977 0.987 0.00082 20.529 14.112
HAUNet 50.879 0.989 0.00085 20.496 14.029
HSENet 51.748 0.991 0.00081 20.702 14.171
MHAN 51.362 0.991 0.00085 20.765 14.195
Omnisr 50.470 0.984 0.00083 20.551 14.171
RCAN 51.684 0.991 0.00085 20.765 14.180
SAN 50.977 0.989 0.00084 20.705 14.183
RDN 51.877 0.991 0.00086 20.880 14.213

Correlation of coefficient (R²) values of NDVI

Data Image HR-LR CAFRN DCM FENet HAUNet HSENet MHAN Omnisr RCAN RDM SAN
Normalized 1 0.385 0.700 0.695 0.695 0.711 0.703 0.686 0.709 0.718 0.725 0.689
Normalized 2 0.902 0.958 0.958 0.952 0.963 0.962 0.965 0.960 0.968 0.969 0.962
Normalized 3 0.799 0.908 0.913 0.907 0.927 0.906 0.910 0.921 0.932 0.928 0.915
Normalized 4 0.824 0.945 0.941 0.941 0.950 0.948 0.950 0.949 0.957 0.958 0.946
Normalized 5 0.744 0.859 0.863 0.860 0.865 0.866 0.870 0.866 0.844 0.881 0.869
16-bit 1 0.385 0.684 0.672 0.679 0.696 0.695 0.680 0.696 0.692 0.696 0.687
16-bit 2 0.902 0.953 0.955 0.952 0.953 0.956 0.956 0.948 0.963 0.963 0.957
16-bit 3 0.799 0.907 0.902 0.897 0.912 0.908 0.909 0.906 0.914 0.923 0.916
16-bit 4 0.824 0.934 0.935 0.936 0.937 0.944 0.948 0.936 0.946 0.951 0.942
16-bit 5 0.744 0.852 0.854 0.851 0.843 0.861 0.858 0.856 0.871 0.865 0.846

RMSE values of NDVI

Data Image HR-LR CAFRN DCM FENet HAUNet HSENet MHAN Omnisr RCAN RDM SAN
Normalized 1 0.083 0.028 0.028 0.028 0.027 0.028 0.029 0.028 0.027 0.027 0.031
Normalized 2 0.350 0.067 0.066 0.072 0.063 0.064 0.062 0.065 0.058 0.058 0.069
Normalized 3 0.321 0.119 0.118 0.124 0.106 0.121 0.128 0.114 0.094 0.103 0.121
Normalized 4 0.381 0.046 0.046 0.046 0.041 0.042 0.041 0.042 0.038 0.038 0.043
Normalized 5 0.181 0.063 0.062 0.064 0.059 0.060 0.060 0.061 0.068 0.056 0.062
16-bit 1 0.083 0.031 0.032 0.029 0.032 0.028 0.029 0.029 0.031 0.029 0.030
16-bit 2 0.350 0.072 0.070 0.071 0.072 0.070 0.075 0.074 0.071 0.071 0.068
16-bit 3 0.321 0.119 0.127 0.145 0.129 0.131 0.121 0.125 0.130 0.114 0.111
16-bit 4 0.381 0.054 0.061 0.052 0.066 0.043 0.046 0.048 0.043 0.044 0.061
16-bit 5 0.181 0.062 0.069 0.064 0.067 0.062 0.062 0.061 0.066 0.059 0.065

Visual Results

True Color Normalized

TCN1

TCN2

TCN3

TCN4

TCN5

True Color 16-bit

TC1

TC2

TC3

TC4

TC5

False Color Normalized

FCN1

FCN2

FCN3

FCN4

FCN5

False Color 16-bit

FC1

FC2

FC3

FC4

FC5

Citation

Wang, P., Aksoy, S., & Sertel, E. (2026). A Benchmark Dataset for Landsat-to-Sentinel Image Generation Using Deep Learning-Driven Super-Resolution Techniques. Advances in Space Research. https://doi.org/10.1016/j.asr.2026.01.049

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published