A benchmark for Landsat to Sentinel imageries via deep learning based super-resolution methods.
Image pairs of this dataset queried inside Google Earth Engine using the following criteria's: Cloudless images, the year 2023 images, acquisition time less than 1 hour between image pairs, and common area of pairs must be at least 100 km x 100 km. 30 pairs manually selected from these pairs using Land2Sent GEE application. Sentinel images are tiled 480 x 480 pixels and Landsat images are tiled 160 x 160 pixels for super resolution model training. Total of 15066 tiles produced. The dataset splitted %70 training, %20 validation, and %10 testing.
Metric values on normalized 4-band images:
| Method | PSNR↑ | SSIM↑ | AG↑ | NIQE↓ | PI↓ |
|---|---|---|---|---|---|
| CAFRN | 35.212 | 0.964 | 0.00545 | 20.327 | 13.764 |
| DCM | 35.468 | 0.967 | 0.00533 | 20.283 | 13.882 |
| FENet | 35.061 | 0.963 | 0.00531 | 20.214 | 13.829 |
| HAUNet | 35.932 | 0.965 | 0.00567 | 20.317 | 13.736 |
| HSENet | 35.588 | 0.963 | 0.00571 | 20.338 | 13.670 |
| MHAN | 35.801 | 0.970 | 0.00582 | 20.295 | 13.627 |
| Omnisr | 35.530 | 0.965 | 0.00559 | 20.366 | 13.696 |
| RCAN | 36.171 | 0.965 | 0.00614 | 20.305 | 13.487 |
| SAN | 35.653 | 0.966 | 0.00558 | 20.260 | 13.655 |
| RDN | 36.636 | 0.972 | 0.00594 | 20.364 | 13.555 |
Metric values on original 16-bit images
| Method | PSNR↑ | SSIM↑ | AG↑ | NIQE↓ | PI↓ |
|---|---|---|---|---|---|
| CAFRN | 50.262 | 0.986 | 0.00082 | 20.605 | 14.155 |
| DCM | 50.388 | 0.987 | 0.00086 | 20.615 | 14.221 |
| FENet | 49.977 | 0.987 | 0.00082 | 20.529 | 14.112 |
| HAUNet | 50.879 | 0.989 | 0.00085 | 20.496 | 14.029 |
| HSENet | 51.748 | 0.991 | 0.00081 | 20.702 | 14.171 |
| MHAN | 51.362 | 0.991 | 0.00085 | 20.765 | 14.195 |
| Omnisr | 50.470 | 0.984 | 0.00083 | 20.551 | 14.171 |
| RCAN | 51.684 | 0.991 | 0.00085 | 20.765 | 14.180 |
| SAN | 50.977 | 0.989 | 0.00084 | 20.705 | 14.183 |
| RDN | 51.877 | 0.991 | 0.00086 | 20.880 | 14.213 |
Correlation of coefficient (R²) values of NDVI
| Data | Image | HR-LR | CAFRN | DCM | FENet | HAUNet | HSENet | MHAN | Omnisr | RCAN | RDM | SAN |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Normalized | 1 | 0.385 | 0.700 | 0.695 | 0.695 | 0.711 | 0.703 | 0.686 | 0.709 | 0.718 | 0.725 | 0.689 |
| Normalized | 2 | 0.902 | 0.958 | 0.958 | 0.952 | 0.963 | 0.962 | 0.965 | 0.960 | 0.968 | 0.969 | 0.962 |
| Normalized | 3 | 0.799 | 0.908 | 0.913 | 0.907 | 0.927 | 0.906 | 0.910 | 0.921 | 0.932 | 0.928 | 0.915 |
| Normalized | 4 | 0.824 | 0.945 | 0.941 | 0.941 | 0.950 | 0.948 | 0.950 | 0.949 | 0.957 | 0.958 | 0.946 |
| Normalized | 5 | 0.744 | 0.859 | 0.863 | 0.860 | 0.865 | 0.866 | 0.870 | 0.866 | 0.844 | 0.881 | 0.869 |
| 16-bit | 1 | 0.385 | 0.684 | 0.672 | 0.679 | 0.696 | 0.695 | 0.680 | 0.696 | 0.692 | 0.696 | 0.687 |
| 16-bit | 2 | 0.902 | 0.953 | 0.955 | 0.952 | 0.953 | 0.956 | 0.956 | 0.948 | 0.963 | 0.963 | 0.957 |
| 16-bit | 3 | 0.799 | 0.907 | 0.902 | 0.897 | 0.912 | 0.908 | 0.909 | 0.906 | 0.914 | 0.923 | 0.916 |
| 16-bit | 4 | 0.824 | 0.934 | 0.935 | 0.936 | 0.937 | 0.944 | 0.948 | 0.936 | 0.946 | 0.951 | 0.942 |
| 16-bit | 5 | 0.744 | 0.852 | 0.854 | 0.851 | 0.843 | 0.861 | 0.858 | 0.856 | 0.871 | 0.865 | 0.846 |
RMSE values of NDVI
| Data | Image | HR-LR | CAFRN | DCM | FENet | HAUNet | HSENet | MHAN | Omnisr | RCAN | RDM | SAN |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Normalized | 1 | 0.083 | 0.028 | 0.028 | 0.028 | 0.027 | 0.028 | 0.029 | 0.028 | 0.027 | 0.027 | 0.031 |
| Normalized | 2 | 0.350 | 0.067 | 0.066 | 0.072 | 0.063 | 0.064 | 0.062 | 0.065 | 0.058 | 0.058 | 0.069 |
| Normalized | 3 | 0.321 | 0.119 | 0.118 | 0.124 | 0.106 | 0.121 | 0.128 | 0.114 | 0.094 | 0.103 | 0.121 |
| Normalized | 4 | 0.381 | 0.046 | 0.046 | 0.046 | 0.041 | 0.042 | 0.041 | 0.042 | 0.038 | 0.038 | 0.043 |
| Normalized | 5 | 0.181 | 0.063 | 0.062 | 0.064 | 0.059 | 0.060 | 0.060 | 0.061 | 0.068 | 0.056 | 0.062 |
| 16-bit | 1 | 0.083 | 0.031 | 0.032 | 0.029 | 0.032 | 0.028 | 0.029 | 0.029 | 0.031 | 0.029 | 0.030 |
| 16-bit | 2 | 0.350 | 0.072 | 0.070 | 0.071 | 0.072 | 0.070 | 0.075 | 0.074 | 0.071 | 0.071 | 0.068 |
| 16-bit | 3 | 0.321 | 0.119 | 0.127 | 0.145 | 0.129 | 0.131 | 0.121 | 0.125 | 0.130 | 0.114 | 0.111 |
| 16-bit | 4 | 0.381 | 0.054 | 0.061 | 0.052 | 0.066 | 0.043 | 0.046 | 0.048 | 0.043 | 0.044 | 0.061 |
| 16-bit | 5 | 0.181 | 0.062 | 0.069 | 0.064 | 0.067 | 0.062 | 0.062 | 0.061 | 0.066 | 0.059 | 0.065 |
Wang, P., Aksoy, S., & Sertel, E. (2026). A Benchmark Dataset for Landsat-to-Sentinel Image Generation Using Deep Learning-Driven Super-Resolution Techniques. Advances in Space Research. https://doi.org/10.1016/j.asr.2026.01.049





















