AI-Medico-Chatbot is an intelligent conversational assistant tailored for the medical domain. It leverages Retrieval-Augmented Generation (RAG) with Pinecone and a large language model (LLM) from Groq to provide accurate and contextual responses based on domain-specific documents.
- ChatGPT-style frontend with typing animation
- Uses LangChain, Groq, and Pinecone
- Integrates HuggingFace Sentence Transformers for embeddings
- Retrieval-Augmented Generation (RAG) pipeline
- Chat history rendering with Flask + Jinja
- Real-time search from vector index
- Easy to customize for any knowledge base
| Component | Technology |
|---|---|
| Frontend | HTML, CSS, JavaScript (ChatGPT-style UI) |
| Backend | Flask, Python 3.13 |
| Vector DB | Pinecone |
| Embeddings | HuggingFace Sentence Transformers |
| LLM | Groq (e.g., Gemma-2B / Gemma-7B) |
| RAG | LangChain with Retrieval + Prompt Template |
git clone https://github.com/yourusername/AI-Medical-Assistant.git
cd AI-Medical-Assistantpython -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activatepip install -r requirements.txtPINECONE_API = 'YOUR PINECONE API'
PINECONE_HOST = 'YOUR PINCONE HOST'
PINECONE_ENV = 'YOUR PINCONE ENV'
GROQ_API = 'YOUR GROQ API'python store_index.pypython app.py📌 TODOs / Future Enhancements Add document upload feature
Enable WebSocket for real-time streaming
Support Markdown rendering (for code, tables, etc.)
Avatar customization
Use LangSmith for tracing and debugging