Skip to content

Yadavraushan/SentiLog-AI

 
 

Repository files navigation

🧠 SentiLog AI

MIT License PRs Welcome Build Status Open Issues


🌟 Overview

SentiLog AI is a full-stack application that blends real-time news sentiment analysis with personal mood journaling. It helps users track their emotions and detect news bias using machine learning.


🔧 Tech Stack

Layer Technology
Frontend React, Vite, Tailwind CSS
Backend Node.js, Express, MongoDB
ML API Python, Flask, VaderSentiment
Auth JWT-based Authentication
DB MongoDB Atlas (via Mongoose)

🗂️ Architecture

graph LR
  A[React Frontend] --> B[Node.js/Express API]
  B --> C[MongoDB]
  B --> D[Flask ML API]
  D --> E[Sentiment Analysis]
Loading

🚀 Getting Started

1. Clone the Repository

git clone https://github.com/openml-stack/SentiLog-AI.git
cd SentiLog-AI

2. Install & Run Client

cd client
npm install
npm run dev

3. Install & Run Server

cd ../server
npm install
cp .env.example .env
# Fill your MongoDB URI and other secrets in .env
npm run dev

4. Install & Run ML API

cd ../ml-api
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python app.py

🌍 Environment Variables

Update .env in server/ folder with:

PORT=8080
MONGODB_URI=mongodb://localhost:27017/sentilog
ML_API_URL=http://localhost:8060
JWT_SECRET=your_secret_key

📄 API Documentation

You can find detailed API information in server/API_DOC.md, including:

  • All Server and ML API endpoints
  • Request/response formats
  • Sample payloads
  • Status codes & error handling

Additionally, the Swagger documentation is available at:

http://localhost:8080/api-docs

✨ Features

📰 News Bias Filter

  • Classifies articles as Left, Right, or Neutral.
  • Real-time NLP-based sentiment + ideological analysis.

📓 Mood Journal

  • Users log their mood and track emotional trends.
  • Analyzed using ML-based sentiment/emotion scoring.

📁 Project Structure

SentiLog-AI/
├── client/           # Frontend (React)
├── server/           # Backend (Express + MongoDB)
├── ml-api/           # Python Flask ML service
├── notebook/         # Research notebooks
├── README.md
└── server/API_DOC.md # Detailed API docs

🧩 Contributing

  1. Comment on an open issue.
  2. Fork the repository.
  3. Work in a feature branch.
  4. Open a pull request with descriptive title.

📝 License

MIT License — see LICENSE


🙌 Community & Support

Let’s build the future of sentiment + media intelligence together.

About

Understand the world. Understand yourself.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 94.4%
  • CSS 3.0%
  • Python 1.6%
  • Other 1.0%