Official PyTorch implementation of the paper "B4DL: A Benchmark for 4D LiDAR LLM in Spatio-Temporal Understanding".
You should make your own OpenAI API key before running the code.
cd datagenerationPlease download the nuScenes dataset and set the nuscenes_root argument to the download path.
Run the following commands:
bash scripts/generate_description.shor you can run the python code directly
python3 generate_description.py \
--start_index 10 \
--end_index 20 \
--api_key {your openai api key} \
--nuscenes_root /mnt/nfs_shared_data/dataset/cch/nuScenes \
--dataroot ./databash scripts/generate_dataset.shor you can run the python code directly
python3 generate_dataset.py \
--start_index 0 \
--end_index 10 \
--api_key {your openai api key} \
--nuscenes_root /mnt/nfs_shared_data/dataset/cch/nuScenes \
--dataroot ./data \
--task existenceBefore running, please download this file and place it under ./base_model/
bash run_stages.sh \
--s1_data ./b4dl_dataset/stage1_lidarllm_mm.json \
--s1_feat ./b4dl/stage1_features \
--s2_data ./b4dl_dataset/stage2.json \
--s2_feat ./b4dl/stage2_features \
--model_name_or_path ./base_model/vicuna-v1-5-7bFor training, check out here(mllm/README.md).
| Example of Generated Dataset | |
|
|
|
|
| Example of Inference | |
|
|
|
|
This work was partly supported by the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.RS-2024-00439020, Developing Sustainable, Real-Time Generative AI for Multimodal Interaction, SW Starlab) and partly supported by the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.RS2025-02283048, Developing the Next-Generation General AI with Reliability, Ethics, and Adaptability)
If you're using VTimeLLM in your research or applications, please cite using this BibTeX:
@inproceedings{choi2025b4dl,
title={B4DL: A Benchmark for 4D LiDAR LLM in Spatio-Temporal Understanding},
author={Choi, Changho and Shin, Youngwoo and Han, Gyojin and Lee, Dong-Jae and Kim, Junmo},
booktitle={Proceedings of the 33rd ACM International Conference on Multimedia},
pages={3399--3407},
year={2025}
}This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License.







