Finds the length of lines of people in images - Grinnell CSC 262 Computer Vision Final Project
- Install
pipenv:
pip install --user pipenv- Get the COCO api ready:
git submodule init
git submodule update
./gen_coco_3.sh- Install dependencies:
pipenv install- Download the coco dataset:
pipenv run ./COCO_download.sh- Run pull up the virtualenv:
pipenv shell- Install Docker
- Grab the coco api
git submodule init
git submodule update-
Run
./docker.sh downloadto download the coco dataset -
Run
./docker.sh shellfor a bash instance in the right virtualenv
Most executable python files have a help option available with python3 $file --help.
This will list the available arguments and what they do.
cd src
python3 download.py [num_imgs]cd src
python3 train.py -m $model_file -o 6000 -i 2000 -e 40 -b 10 -l 0.0005 -r TrueIMAGE_ID should be one of the downloaded images:
cd src
python3 classify.py -m $model_file IMAGE_IDNote: This file does not have help
cd src
python3 mAP_formatting.py IMAGE_ID IMAGE_ID IMAGE_ID IMAGE_ID ...Should be the same set of image ids as above
cd src
python3 classify.py -m $file -f -p IMAGE_ID IMAGE_ID IMAGE_ID IMAGE_ID ...cd mAP
python3 main.pyNote: the queue-classification folder has a different set of dependencies than the
rest of the project. As such, if you are in the larger python virtualenv when you enter
the folder, you should run the exit command before cding in, and then run pipenv shell
in the queue-classification folder.
cd queue-classification
pipenv install
pipenv shell
python3 gen_labels.py -v $video_file -o "$video-file".jsoncd queue-classification
python3 queue_classification.py -v $video-file -a "$video-file".json