A specialized framework for optimizing cache performance in Transformer models, focusing on efficient memory usage and faster inference times. This project implements advanced caching strategies for attention mechanisms and intermediate computations in transformer architectures.
- KV-Cache implementation for attention layers
- Dynamic cache size management
- Prefetching strategies for transformer blocks
- Memory-efficient attention patterns
- Cache eviction policies
- Reduced memory footprint
- Faster inference times
- Optimized attention computation
- Efficient memory management
- Customizable caching strategies
- Custom attention layer implementations
- Memory-efficient transformer blocks
- Cache management system
- Optimization algorithms
- Performance monitoring tools
-
KV-Cache Management
- Dynamic sizing
- Prefetch optimization
- Memory allocation
- Cache coherence
-
Memory Optimization
- Sparse attention patterns
- Gradient checkpointing
- Memory-efficient attention
- Optimized tensor operations
-
Inference Optimization
- Batch processing
- Pipeline parallelism
- Efficient scheduling
- Resource management
- Python 3.8+
- PyTorch 2.0+
- CUDA toolkit (for GPU support)
- Standard ML libraries
# Clone the repository
git clone https://github.com/anudeepadi/Cache_OPT_Transformers.git
cd Cache_OPT_Transformers
# Create virtual environment
python -m venv venv
source venv/bin/activate # Unix/macOS
# or
.\venv\Scripts\activate # Windows
# Install dependencies
pip install -r requirements.txtfrom cache_opt_transformers import CacheOptimizedTransformer
# Initialize model with cache optimization
model = CacheOptimizedTransformer(
hidden_size=768,
num_layers=12,
cache_config={
'strategy': 'dynamic',
'max_size': '2GB',
'eviction_policy': 'LRU'
}
)
# Run inference with optimized caching
output = model.generate(
input_ids,
use_cache=True,
cache_strategy='optimal'
)# Configure advanced caching options
cache_config = {
'mode': 'adaptive',
'prefetch_size': 1024,
'memory_efficient': True,
'optimization_level': 'aggressive'
}
model.configure_cache(cache_config)Standard Transformer: 16GB
Cache Optimized: 8GB
Memory Reduction: 50%
Standard Processing: 100 tokens/sec
Optimized Processing: 180 tokens/sec
Speed Improvement: 80%
cache:
mode: dynamic # static/dynamic/adaptive
max_size: 2GB # maximum cache size
strategy: LRU # LRU/FIFO/LFU
prefetch: true # enable prefetchingoptimization:
level: aggressive # conservative/moderate/aggressive
memory_efficient: true
gradient_checkpointing: true
attention_optimization: trueWe welcome contributions! Here's how you can help:
- Fork the repository
- Create a feature branch
- Implement your changes
- Add tests for new features
- Submit a pull request
- Follow PEP 8 style guide
- Add unit tests
- Update documentation
- Use type hints
- Write clear commit messages
Run tests using:
# Run all tests
pytest tests/
# Run specific test suite
pytest tests/test_cache_optimization.py- Multi-GPU cache synchronization
- Advanced prefetching algorithms
- Dynamic optimization strategies
- Custom cache policies
- Performance analytics tools
- Transformer architecture papers
- PyTorch community
- ML optimization research
- Contributing developers
For questions and support:
- GitHub Issues: Create an issue
- GitHub: @anudeepadi
Note: This project is under active development. Features and documentation are regularly updated.