Provides utility functions related to the ScienceBeam project.
Please refer to the development documentation if you wish to contribute to the project.
Most tools are not yet documented. Please feel free to browse the code or tests, or raise an issue.
- Python 3
- Apache Beam
Apache Beam may be used to for preprocessing but also its transparent FileSystems API which makes it easy to access files in the cloud.
pip install apache_beam[gcp]pip install sciencebeam-utilsThe preferred input layout is a directory containing a gzipped pdf (.pdf.gz) and gzipped xml (.nxml.gz), e.g.:
- manuscript_1/
- manuscript_1.pdf.gz
- manuscript_1.nxml.gz
- manuscript_2/
- manuscript_2.pdf.gz
- manuscript_2.nxml.gz
Using compressed files is optional but recommended to reduce file storage cost.
The parent directory per manuscript is optional. If that is not the case then the name before the extension must be identical (which is recommended in general).
Run:
python -m sciencebeam_utils.tools.find_file_pairs \
--data-path <source directory> \
--source-pattern *.pdf.gz --xml-pattern *.nxml.gz \
--out <output file list csv/tsv>e.g.:
python -m sciencebeam_utils.tools.find_file_pairs \
--data-path gs://some-bucket/some-dataset \
--source-pattern *.pdf.gz --xml-pattern *.nxml.gz \
--out gs://some-bucket/some-dataset/file-list.tsvThat will create the TSV (tab separated) file file-list.tsv with the following columns:
- source_url
- xml_url
That file could also be generated using any other preferred method.
To separate the file list into a training, validation and test dataset, the following script can be used:
python -m sciencebeam_utils.tools.split_csv_dataset \
--input <csv/tsv file list> \
--train 0.5 --validation 0.2 --test 0.3 --random --fille.g.:
python -m sciencebeam_utils.tools.split_csv_dataset \
--input gs://some-bucket/some-dataset/file-list.tsv \
--train 0.5 --validation 0.2 --test 0.3 --random --fillThat will create three separate files in the same directory:
file-list-train.tsvfile-list-validation.tsvfile-list-test.tsv
The file pairs will be randomly selected (--random) and one group will also include all remaining file pairs that wouldn't get include due to rounding (--fill).
As with the previous step, you may decide to use your own process instead.
Note: those files shouldn't change anymore once you used those files
Since ScienceBeam is intended to convert files, there will be output files. To make it specific what the filenames are, the output files are also kept in a file list. This tool will generate the file list (it doesn't matter whether the files actually exist for this purpose).
e.g.
python -m sciencebeam_utils.tools.get_output_files \
--source-file-list path/to/source/file-list-train.tsv \
--source-file-column=source_url \
--output-file-suffix=.xml \
--output-file-list path/to/results/file-list.lstBy adding the --check argument, it will check whether the output files exist (see below).
After generating an output file list, this tool can be used whether the output files exist or are complete.
e.g.
python -m sciencebeam_utils.tools.check_file_list \
--file-list path/to/results/file-list.lst \
--file-column=source_url \
--limit=100This will check the first 100 output files and report on it. The command will fail if none of the output files exist.