Skip to content

Methodology framework for AI-assisted software development. Checkpoints, escalation rules, security gates, and workflows to ship quality code with AI agents, from single developer to team-scale factories.

License

Notifications You must be signed in to change notification settings

laugiov/agentic-dev-framework

Repository files navigation

Agentic Development Framework

Documentation License: MIT

A methodology framework for AI-assisted software development. Structure your AI coding workflow with checkpoints, escalation rules, and human oversight to ship quality code faster.


What Problem This Solves

AI coding assistants can generate code fast, but without structure:

  • Developers spend too much time validating AI output
  • Quality is inconsistent across sessions
  • Security issues slip through
  • No clear process for when to trust vs. verify

This framework provides guardrails that make AI-assisted development predictable, secure, and scalable.


What This Framework Provides

Component Purpose
Checkpoints (C0→C3) Structured workflow: Scope → Plan → Implement → PR
Escalation Rules When AI must stop and ask the human
Quality Gates Automated + human verification at each stage
Security Module DevSecOps for AI-generated code
Factory Model Scale to multiple agents and batch processing

Start Here

Your Goal Start With
Apply to your project Bootstrap Guide
Learn the workflow Agent Quickstart
Understand checkpoints Checkpoints Spec
See real examples Case Studies
Scale to teams Factory Model
Secure AI code Security Module

The Core Workflow

┌─────────────────────────────────────────────────────────────┐
│                    BEFORE ANY WORK                          │
│   Check Escalation Triggers → If any apply → STOP → Ask     │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│ C0: SCOPE                                                    │
│ • Understand the task                                       │
│ • Define what's in/out of scope                             │
│ • Identify affected files                                   │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│ C1: PLAN (for non-trivial tasks)                            │
│ • Document approach                                         │
│ • Identify risks                                            │
│ • Get human validation if needed                            │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│ C2: IMPLEMENT                                                │
│ • Write code following plan                                 │
│ • Run tests                                                 │
│ • Pass automated gates                                      │
└─────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────┐
│ C3: PR & PROOFS                                              │
│ • Document what was done                                    │
│ • Provide evidence (tests, screenshots)                     │
│ • Human reviews and approves                                │
└─────────────────────────────────────────────────────────────┘

Escalation Rules — The Highest Value Component

AI agents must stop and ask when:

Trigger Example
Architecture decisions New service, schema change, new dependency
Security concerns Auth changes, crypto, access control
Data handling PII, migrations, retention policies
Breaking changes API changes, deprecations
Uncertainty Multiple valid approaches, unclear requirements

See ESCALATION_RULES.md


Task Size → Workflow

Not every task needs the full workflow:

Size Lines Workflow
Trivial < 10 Fast Path (C0 + C3 only)
Small 10-50 Lite (C0 + C2 + C3)
Medium 50-200 Full (C0 → C1 → C2 → C3)
Large > 200 Full + Extra Review

Repository Structure

├── core/
│   ├── agent-operating-model/   Roles, escalation, golden rules
│   ├── spec/                    Checkpoints, templates
│   ├── security/                DevSecOps for AI code
│   └── factory-model/           Scale: multi-agent, batch, metrics
│
├── runtime/
│   ├── golden-path/             Quickstarts, bootstrap
│   ├── prompts/                 System prompts for agents
│   └── quality-gates/           Definition of done
│
├── case-studies/                Real workflow examples
├── bench/                       Benchmark tasks
├── examples/php-symfony-k8s/    Complete reference implementation
└── tools/                       Validation utilities

Security Module — Your Competitive Edge

AI-generated code needs additional security controls:

Component Purpose
Secure Code Generation Security-aware prompts, OWASP rules
Security Gates SAST, secrets detection, dependency scanning
Supply Chain Security Dependencies, AI model trust
Audit Trail Traceability for all AI-generated code

Factory Model — Scale to Teams

When you need more than 1 developer + 1 AI:

Component Purpose
Multi-Agent Orchestration Coordinate N agents on M tasks
Batch Pipeline Overnight code generation
Automated Gates Pre-review quality checks
Metrics Dashboard Track and optimize

Adoption Levels

Level Files Time to Start
Micro 2 files 10 minutes
Minimal 6 files 30 minutes
Full Complete framework 2 hours
Factory + Scale modules 1 week

See Bootstrap Guide


Key Principles

Human at the Checkpoints

AI executes autonomously within bounds. Humans approve at defined gates.

Escalation Over Assumption

When in doubt, the AI asks. It's faster to clarify than to fix bad code.

Proportional Process

Trivial tasks get fast path. Complex tasks get full workflow.

Security by Default

Every line of AI-generated code goes through security gates.


Contributing

See CONTRIBUTING.md for guidelines.

License

MIT License — See LICENSE for details.

Author

Laurent Giovannoni


A methodology framework for AI-assisted software development — ship quality code faster with human oversight.

About

Methodology framework for AI-assisted software development. Checkpoints, escalation rules, security gates, and workflows to ship quality code with AI agents, from single developer to team-scale factories.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages