Skip to content

mmaclay/curryer

 
 

Repository files navigation

Curryer

A library for SPICE extensions and geospatial data product generation.

Core Features

  • Extensions and wrappers for SPICE routines and common data patterns.
  • Automation of SPICE kernel creation from JSON definition files and modern data file formats and third-party data structures.
  • Level-1 geospatial data processing routines (e.g., geolocation).

Install

pip install lasp-curryer

Data / Binary Files

NOTE: Data files and precompiled binaries are not currently automated and thus require manual downloading. This will be addressed in the next major release.

Download from the Curryer repo:

  • data/generic - Generic spice kernels (e.g., leapsecond kernel)
    • Download
  • data/<misssion> - Mission specific kernels and/or kernel definitions.
  • data/gmted - Digital Elevation Model (DEMs) with global coverage at 15-arc-second.
    • Alternatively, use the script download_dem.py to download different types and/or resolutions from the USGS.

Define the top-level directory using the environment variable CURRYER_DATA_DIR or pass the path to routines which require data files.

Download Third-party Files:

Examples

SPICE Extensions

Time conversion:

from curryer import spicetime

print(spicetime.adapt(0, from_='ugps', to='iso'))
# 1980-01-06 00:00:00.000000

print(spicetime.adapt('2024-11-13', 'iso'))
# 1415491218000000

print(spicetime.adapt(1415491218000000, to='et'))
# 784728069.1827033

import numpy as np

print(repr(spicetime.adapt(np.arange(4) * 60e6 + 1415491218000000, to='dt64')))
# array(['2024-11-13T00:00:00.000000', '2024-11-13T00:01:00.000000',
#        '2024-11-13T00:02:00.000000', '2024-11-13T00:03:00.000000'],
#       dtype='datetime64[us]')

Abstractions:

from curryer import spicierpy

spicierpy.ext.infer_ids('ISS', 25544, from_norad=True)
# {'mission': 'ISS',
#  'spacecraft': -125544,
#  'clock': -125544,
#  'ephemeris': -125544,
#  'attitude': -125544000,
#  'instruments': {}}

earth = spicierpy.obj.Body('Earth')
print(earth, earth.id)
# Body(EARTH) 399

import curryer

mkrn = curryer.meta.MetaKernel.from_json(
    'data/tsis1/tsis_v01.kernels.tm.json', sds_dir='data/generic', relative=True
)
print(mkrn)
# MetaKernel(Spacecraft(ISS_SC), Body(ISS_ELC3), Body(ISS_EXPA35), Body(TSIS_TADS),
#   Body(TSIS_AZEL), Body(TSIS_TIM), Body(TSIS_TIM_GLINT))

with spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
    print(spicierpy.ext.instrument_boresight('TSIS_TIM'))
# [0. 0. 1.]

mkrn = curryer.meta.MetaKernel.from_json(
    'tests/data/clarreo/cprs_v01.kernels.tm.json', sds_dir='data/generic', relative=True
)
print(mkrn)
# MetaKernel(Spacecraft(ISS_SC), Body(CPRS_BASE), Body(CPRS_PEDE),
#   Body(CPRS_AZ), Body(CPRS_YOKE), Body(CPRS_EL), Body(CPRS_HYSICS))

with spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
    print(curryer.compute.spatial.pixel_vectors('CPRS_HYSICS'))
# (480,
#  array([[ 0.00173869, -0.08715574,  0.99619318],
#         [ 0.0017315 , -0.08679351,  0.99622482],
#         [ 0.00172431, -0.08643127,  0.99625632],
#         ...,
#         [-0.00171712,  0.08606901,  0.9962877 ],
#         [-0.00172431,  0.08643127,  0.99625632],
#         [-0.0017315 ,  0.08679351,  0.99622482]]))

SPICE Kernel Creation

Create CLARREO Dynamic Kernels:

import curryer

meta_kernel = 'tests/data/clarreo/cprs_v01.kernels.tm.json'
generic_dir = 'data/generic'
kernel_configs = [
    'data/clarreo/iss_sc_v01.ephemeris.spk.json',
    'data/clarreo/iss_sc_v01.attitude.ck.json',
    'data/clarreo/cprs_az_v01.attitude.ck.json',
    'data/clarreo/cprs_el_v01.attitude.ck.json',
]
output_dir = '/tmp'
input_file_or_obj = 'tests/data/demo/cprs_geolocation_tlm_20230101_20240430.nc'

# Load meta kernel details. Includes existing static kernels.
mkrn = curryer.meta.MetaKernel.from_json(meta_kernel, relative=True, sds_dir=generic_dir)

# Create the dynamic kernels from the JSONs alone. Note that they
# contain the reference to the input_data netcdf4 file to read.
generated_kernels = []
creator = curryer.kernels.create.KernelCreator(overwrite=False, append=False)

# Generate the kernels from the config and input data (file or object).
for kernel_config in kernel_configs:
    generated_kernels.append(creator.write_from_json(
        kernel_config, output_kernel=output_dir, input_data=input_file_or_obj,
    ))

Level-1 Geospatial Processing

Geolocate CLARREO HYSICS Instrument:

import pandas as pd
import curryer

meta_kernel = 'tests/data/clarreo/cprs_v01.kernels.tm.json'
generic_dir = 'data/generic'

time_range = ('2023-01-01', '2023-01-01T00:05:00')
ugps_times = curryer.spicetime.adapt(pd.date_range(*time_range, freq='67ms', inclusive='left'), 'iso')

# Load meta kernel details. Includes existing static kernels.
mkrn = curryer.meta.MetaKernel.from_json(meta_kernel, relative=True, sds_dir=generic_dir)

# Geolocate all the individual pixels and create the L1A data product!
with curryer.spicierpy.ext.load_kernel([mkrn.sds_kernels, mkrn.mission_kernels]):
    geoloc_inst = curryer.compute.spatial.Geolocate('CPRS_HYSICS')
    l1a_dataset = geoloc_inst(ugps_times)
    l1a_dataset.to_netcdf('cprs_geolocation_l1a_20230101.nc')

Assumes dynamic kernels have been created and their file names defined within the metakernel JSON file.

About

SPICE extensions and geospatial tools

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.0%
  • HCL 14.1%
  • Other 0.9%