The Universal Configuration Standard for AI-Assisted Development
A comprehensive, production-ready collection of configuration files, templates, and best practices for professional AI-assisted coding across all major AI IDEs and coding assistants.
Agentic coding (also known as vibe coding) is a structured development methodology where developers collaborate with AI agents through explicit rules, context management, and best practices. Instead of blindly trusting AI output, you create a "constitutional framework" that guides AI behavior, ensuring consistent, secure, and maintainable code.
The Key Principle: Context is king. AI agents are only as good as the rules and context you provide them.
- Universal Standard: Based on the 2025 AGENTS.md standard backed by OpenAI, Google, Anthropic, Cursor, and Sourcegraph
- Tool-Agnostic: Works across Windsurf, Cursor, GitHub Copilot, Claude Code, and all major AI IDEs
- Production-Ready: Battle-tested rules from real-world projects, not academic examples
- Security-First: Explicit security guardrails to prevent common AI-generated vulnerabilities
- Token-Optimized: Carefully crafted to maximize efficiency and minimize costs
- Comprehensive: Covers everything from setup to advanced multi-agent workflows
AGENTS.md- Universal AI agent configuration (the new standard)agent_template.md- Production-ready template with placeholdersagent_example.md- Complete real-world example with best practices
global_rules.md- Windsurf global rules (cross-project standards).windsurfrules- Windsurf project-specific rules with XML structure.cursorrules- Cursor IDE configuration.github/copilot-instructions.md- GitHub Copilot repository instructionsCLAUDE.md- Claude Code specific configuration
security_rules.md- Comprehensive security guidelines for AI code generationperformance_rules.md- Performance optimization patternstesting_rules.md- Testing standards and patternsmigration_guide.md- How to migrate from tool-specific to universal configs
adaptation_prompt.txt- AI prompt to customize templates for your projectproject_analyzer.txt- Prompt to analyze existing projects and generate rulesbest_practices.md- Comprehensive guide to effective agentic coding
Option A: Universal AGENTS.md (Recommended)
# Copy the universal template
cp agent_template.md AGENTS.md
# Edit for your project
# Then create symbolic links for tool compatibility:
ln -s AGENTS.md .cursorrules
ln -s AGENTS.md CLAUDE.md
ln -s AGENTS.md .windsurfrulesOption B: Tool-Specific Start
# For Windsurf
cp global_rules.md ~/your-global-rules-location/
cp .windsurfrules ./your-project/
# For Cursor
cp .cursorrules ./your-project/
# For GitHub Copilot
mkdir -p .github
cp copilot-instructions.md .github/Use our AI-powered customization prompt:
# Read adaptation_prompt.txt
# Fill in your project details
# Let AI generate your customized configurationOr use the project analyzer:
# Read project_analyzer.txt
# Point it at your existing codebase
# Get AI-generated rules based on your patterns# Ask your AI agent to implement a simple feature
# Review if it follows your rules
# Iterate on rule clarity if neededagentic-coding-rulebook/
โโโ README.md # This file
โโโ AGENTS.md # Universal standard template
โโโ agent_template.md # Customizable template with placeholders
โโโ agent_example.md # Real-world complete example
โ
โโโ tool-specific/
โ โโโ windsurf/
โ โ โโโ global_rules.md # Cross-project standards
โ โ โโโ .windsurfrules # Project-specific XML config
โ โ โโโ windsurfrules_example.md # Complete example
โ โ
โ โโโ cursor/
โ โ โโโ .cursorrules # Cursor configuration
โ โ โโโ cursor_rules_example.md # Complete example
โ โ
โ โโโ github-copilot/
โ โ โโโ copilot-instructions.md # Repository instructions
โ โ โโโ copilot_example.md # Complete example
โ โ
โ โโโ claude-code/
โ โโโ CLAUDE.md # Claude Code configuration
โ โโโ claude_example.md # Complete example
โ
โโโ specialized-rules/
โ โโโ security_rules.md # Security-first patterns
โ โโโ performance_rules.md # Performance optimization
โ โโโ testing_rules.md # Testing standards
โ โโโ accessibility_rules.md # A11y guidelines
โ
โโโ helpers/
โ โโโ adaptation_prompt.txt # Customize template for your project
โ โโโ project_analyzer.txt # Analyze existing projects
โ โโโ rule_validator.txt # Validate rule effectiveness
โ
โโโ guides/
โ โโโ getting_started.md # Step-by-step setup guide
โ โโโ best_practices.md # Comprehensive methodology guide
โ โโโ migration_guide.md # Tool migration strategies
โ โโโ troubleshooting.md # Common issues and solutions
โ โโโ advanced_patterns.md # Multi-agent, hierarchical configs
โ
โโโ examples/
โโโ react-nextjs-project/ # Full example: React/Next.js
โโโ python-fastapi-project/ # Full example: Python/FastAPI
โโโ java-spring-project/ # Full example: Java/Spring Boot
โโโ monorepo-example/ # Full example: Monorepo structure
Our rulebook is built on proven principles from production environments:
Choose the simplest viable solution. Complex patterns require explicit justification.
Code must be immediately understandable by both humans and AI during future modifications.
No new libraries or frameworks without explicit request or compelling justification.
All external data validated, no secrets in code, explicit security requirements.
Design all code to be easily testable from inception.
Use file-scoped commands, reference external docs, optimize context window usage.
AI-generated code requires explicit security guardrails:
- Never trust AI output without review - Treat all generated code as untrusted
- Validate all inputs - Explicit validation rules in your configuration
- No secrets in code - Environmental variables and secret management
- Security scanning - SAST, SCA, secrets detection in CI/CD
- Explicit security patterns - Authentication, authorization, encryption requirements
See specialized-rules/security_rules.md for comprehensive guidelines.
Token efficiency directly impacts costs and speed:
- File-scoped commands -
npm run tsc --noEmit path/to/file.tsx(3 seconds) vsnpm run build(3 minutes) - Target <2,000 tokens - Start minimal, grow organically
- Reference, don't duplicate - Link to external docs instead of embedding
- Hierarchical organization - Separate configs for monorepo packages
- Prompt caching - Place stable content first
See specialized-rules/performance_rules.md for optimization patterns.
This rulebook works with all major AI coding assistants:
| Tool | Configuration File | Native Support | Via Symlink |
|---|---|---|---|
| Universal | AGENTS.md |
โ OpenAI Codex, Google Jules, Cursor, Factory AI | - |
| Windsurf | .windsurfrules or global_rules.md |
โ Native | Via symlink to AGENTS.md |
| Cursor | .cursorrules or .cursor/rules/*.mdc |
โ Native | Via symlink to AGENTS.md |
| GitHub Copilot | .github/copilot-instructions.md |
โ Native + reads AGENTS.md | - |
| Claude Code | CLAUDE.md |
โ Native + reads AGENTS.md | Via symlink to AGENTS.md |
| Aider | AGENTS.md |
โ Native | - |
| Zed | AGENTS.md |
โ Native | - |
- Getting Started Guide - Step-by-step setup for beginners
- Best Practices - Comprehensive methodology guide
- Migration Guide - Moving from tool-specific to universal configs
- Advanced Patterns - Multi-agent workflows, hierarchical configs
- Troubleshooting - Common issues and solutions
We welcome contributions! See CONTRIBUTING.md for guidelines.
Ways to contribute:
- Share your production-ready rule examples
- Improve existing templates with real-world learnings
- Add support for new tools and frameworks
- Report issues or suggest enhancements
- Improve documentation and guides
"Reduced AI-generated bugs by 70% after implementing these security rules. Game changer for our team." - Senior Engineer at Tech Startup
"The token optimization tips saved us $2,000/month in API costs. File-scoped commands alone were worth it." - CTO at SaaS Company
"Finally, consistent code across all our microservices. The hierarchical AGENTS.md approach works perfectly." - Lead Developer at Enterprise
- AGENTS.md Official Spec - The universal standard
- OpenAI Codex Documentation - Official OpenAI guidance
- Cursor Documentation - Cursor IDE rules
- GitHub Copilot Custom Instructions - Copilot configuration
- Windsurf Directory - Windsurf rule examples
- Vibe Coding AI Rules - Global and Project specific coding rules
MIT License - See LICENSE for details.
Built on learnings from thousands of production implementations and contributions from the global agentic coding community. Special thanks to:
- The AGENTS.md standardization initiative (OpenAI, Google, Anthropic)
- The Cursor, Windsurf, and GitHub Copilot teams
- The open-source community sharing real-world patterns
- Early adopters who battle-tested these approaches
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Website: www.obviousworks.ch
Start shipping features faster, not bugs faster. ๐
Give AI the rules it needs, get the code quality you deserve.