Drink from the well of knowledge in the AI era.
AI intelligence collection and organization system. Automatically collects, processes, and archives information from RSS, YouTube, and Twitter.
- Multi-source collection: RSS feeds, YouTube channels
- Processing pipeline: content cleaning, quality assessment, deduplication, classification, knowledge extraction
- Optional LLM enhancement: summarization, translation, categorization
- Notion integration for archiving
- Cost control with budget limits
git clone https://github.com/rpings/Mimir.git
cd Mimir
pip install -r requirements.txt-
Set environment variables:
export NOTION_TOKEN="your_token" export NOTION_DATABASE_ID="your_database_id" # Optional: LLM features export OPENAI_API_KEY="sk-..."
-
Edit configuration files:
configs/sources/rss.yaml- RSS feedsconfigs/sources/rules.yaml- Classification rulesconfigs/config.yml- Main config
python main.py # Sync mode
python main_async.py # Async modeSee configs/config.yml for full configuration options.
Key settings:
- Processing pipeline processors (cleaning, quality, verification, etc.)
- LLM settings (optional, requires API key)
- Notion database configuration
To enable LLM features:
- Set
OPENAI_API_KEYenvironment variable - Enable in
configs/config.yml:llm: enabled: true provider: openai model: gpt-4o-mini
For local models, set base_url in config or LLM_BASE_URL environment variable.
# Setup
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Test
pytest tests/
# Code quality
black src/ tests/
ruff check src/ tests/MIT License - see LICENSE file.