Skip to content
Marta Truszczyńska edited this page Aug 30, 2025 · 1 revision

BioBloom Documentation 📚

Full documentation for the BioBloom project repository.


Project Overview

BioBloom explores microalgae proteomes as a source of bioactive compounds with pharmacological potential.
We focus on bioactive peptides (esp. ACE inhibitors for cardiovascular health) by:

  1. Mining microalgal proteomes,
  2. Querying the BIOPEP-UWM database,
  3. Filtering peptide lists & removing duplicates,
  4. Screening ADMET properties with AdmetLab 3.0,
  5. Converting between FASTA ⇄ SMILES ⇄ PDB,
  6. Generating peptide 3D structures,
  7. Preparing receptor structures,
  8. Producing input/output for pLM4ACE and docking pipelines.

Repository Structure

biopep_uwm/

Automation of the BIOPEP-UWM batch processing:

  • selenium_biopep_batch_processing.py – ACE inhibitory activity screening.
  • selenium_batch_processing_scraper.py – enzyme action analysis.
  • search_for_novel_peptides.py – compare BIOPEP results with known ACE inhibitors.
  • unify_a_platensis_biopep_output.py – merge & deduplicate A. platensis BIOPEP peptide lists.

admet/

Filtering and unifying ADMET screening results:

  • unify_admet_output_a_platensis.py – merge species-specific ADMET outputs.

molecular_docking/

Peptide/receptor structure preparation:

  • generate_peptide_structures_pyrosetta.py – build PDBs from FASTA with PyRosetta.
  • repack_receptor_pyrosetta.py – side-chain repacking of ACE receptor.
  • place_pep_into_ace.py – peptide placement into ACE binding pocket.
  • select_top_peptides_for_molecular_docking.py – rank/filter peptides by ADMET criteria.

pLM4ACE/

Formatting utilities for the pLM4ACE model:

  • prepare_pLM4ACE_input.py – create input files.
  • split_pLM4ACE_input.py – split input into batches.
  • unify_pLM4ACE_output.py – merge model outputs.

smiles_conversion/

Cheminformatics utilities:

  • smiles_converter.py – bidirectional FASTA ⇄ SMILES.
  • create_fasta_input_for_smiles_conversion.py – prep FASTA for conversion.
  • extract_smiles_without_names.py – clean SMILES files (remove labels, keep strings only).

Requirements

  • Python 3.9+
  • PyRosetta (licensed, manual install)
  • Chrome + Chromedriver (auto-installed with webdriver-manager)

Python dependencies

pip install biopython selenium tqdm openpyxl pandas numpy rdkit-pypi